Multivalued Semi-inverses for Diagonalizable Nonsingular Matrices
Donald R. Burleson, Ph.D.
Copyright (c) November 2018 by Donald R. Burleson. All rights reserved.
In some of my earlier research articles I have outlined procedures by which a suitable
matrix A may be semi-inverted, i.e. may be subjected to a matrix-valued transform such that
In particular, I have proven that every
nonsingular diagonalizable matrix is semi-invertible, since a diagonalizable matrix A always has
a principal idempotent decomposition (spectral decomposition) in terms of its spectrum
from which, since under the hypothesis of nonsingularity all
the eigenvalues are nonzero and the function
is holomorphic in any open
neighborhood not containing zero, one may semi-invert the matrix by exponentiating the
eigenvalues and using the resulting forms as the coefficients in the spectral decomposition of the
resulting matrix:
By Euler's Formula we may then compute the exponentiated eigenvalue coefficients as
In the case of any terms in the spectral decomposition where the eigenvalue is a non-real
complex number z, we may compute the logarithms in the above expression as
in principal complex value, and may call the resulting
matrix the principal semi-inverse of A.
However, if we do not restrict the value of ln(z) to its principal value, admitting instead the multivalued logarithm
(where the case n = 0 gives the principal complex value result), then we have shown that a semi-inverse of A exists for each value of n, as the evaluation of the necessary coefficients in the spectral decomposition is readily managed.
Much the same is true even for real-number eigenvalues having, as complex numbers, argument = 0.
For a real eigenvalue λ, Euler's formula again implies that one may take λi as cos ln(λ) + i sin ln(λ). However,
since Euler's formula also implies that e-2nπ = 1i for n = 0,1,2,3,..., the expression [(1)(λ)]i = (1i)(λi)
is a multivalued coefficient in each term
λjiEj = e-2nπ[cos ln(λj) + i sin ln(λj)]Ej
of the principle idempotent expression of the semi-inverse.
The exponential factors, while remaining positive, clearly approach 0. Thus we have proven the following:
THEOREM: Every nonsingular diagonalizable matrix over the field of complex numbers
is semi-invertible and in fact has a countably infinite number of semi-inverses that form
a sequence of matrices
converging to the null matrix as a limit.
COROLLARY:Every nonsingular Hermitian matrix has a countably infinite number of
semi-inverses forming a matrix sequence approaching the zero matrix as a limit.
PROOF:Every Hermitian matrix is diagonalizable.
EXAMPLE:
Let
It is readily shown that for diagonalization a modal matrix, using respective eigenvectors as
columns, is and that the resulting diagonalization is
so that we have
which in principal complex value (the case n = 0 mentioned above) gives, by Euler's Formula,
which multiplies out to give the principal semi-inverse
But if, instead of the branch n = 0, we follow the branch n = 1 and write
the resulting semi-inverse, by the
same procedure as described above (but this time with
), works out to be
with, similarly, other semi-inverses existing for all other positive integer values of n.
The two results shown above are the first two elements (for n=0 and n=1) of a matrix sequence